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A direct and efficient aromatization of chlorohydroazulenones has been achieved by using triflic
anhydride and then lutidine or tropylium cation to afford selectively chloroazulenes and chloroazulenyl
triflates, respectively.
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Azulenes constitute a class of polycyclic nonbenzenoid aromatic
hydrocarbons that have long interested chemists for not only their
remarkable blue colors but also their unusual electronic1a–c and
biological properties.1d,e These important compounds are used in
areas as varied as pharmaceuticals,1f–h cosmetics,1i and new
molecular materials.1j,k Many approaches have been developed to
access this family of aromatics, but low yields are not uncommon
and many substitution patterns are still difficult to access among
the polysubstituted azulenes.2 We recently have described a new,
flexible, and efficient approach to polysubstituted natural and
non-natural azulenes through a 3-step reduction-elimination-
aromatization sequence from hydroazulenones 1 (Scheme 1).3

Herein, we present a new direct access to polysubstituted azu-
lenes through an unusually direct aromatization (without a dehy-
drogenation step) to obtain various 1-chloroazulenes (Scheme 2).
This direct access to 1-chloroazulenones suppressed the 2-step
ll rights reserved.
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reduction-elimination sequence. Hydroazulenones 1 are easily
obtained by a [2+2] cycloaddition/ring expansion/elimination
sequence4 (Scheme 3).

This improvement provides selective access to chloroazulenes,
precursors of natural compounds, and in addition to novel
chloroazulenyl triflates converted to azulene 4 by selective
Scheme 2. Synthesis of azulenes from hydroazulenones 1.
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Table 2
Direct synthesis of 1-chloroazulen-2-yl triflates 3 from a-chlorotrienone 1

Chlorotrienone R1 R2 Yield (%) Product

1a H H 44a (44)b 3a
1b Me H 69a (64)b 3b
1c Me i-Pr 76 3c
1d Me CH3–CH–CO2Me 75 3d

a Yields obtained after purification on silica gel chromatography.
b Yields for one-step transformation.

Scheme 4. Synthesis of 1,2,4-trimethylazulene 4b.
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Scheme 3. Synthesis of chlorohydroazulenones 1.
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cross-coupling reactions (Scheme 2). This new direct aromatization
with triflic anhydride is a very higher flexible and efficient
approach to polysubstituted azulenes.

Takase et al.5 have demonstrated by UV spectroscopy that 2-
hydroxyazulenes exist in solution predominately as their ketonic
form, the aromaticity energy gain being insufficient to favor the
enolic form. Taking this into account, a direct aromatization of
the a-chlorotrienone 1 (R1 = Me, R2 = H) was previously achieved
in our group by trapping of the enolic form with acetic anhydride
and dehydrogenation on 10% Pd/C, but elevated temperature was
required, and the reaction was insufficient (only 50% yield).3 As a
result, we have sought a new more efficient aromatization proce-
dure to obtain under mild conditions polysubstituted azulenes
from the a-chlorotrienones 1.

Initial studies were performed by exposing compound 1
(R1 = Me, R2 = H) to Eaton’s reagent,6 previously used by Scott
et al.7 to effect direct dehydration of a bicyclic trienone. Unfortu-
nately, these conditions only provided traces of an unseparable
azulene mixture and considerable degradation. Methanesulfonic
anhydride afforded no azulenic products at all. Finally, triflic anhy-
dride in CH2Cl2 was found to give encouragingly a mixture of two
azulenes, 2 and 3 (R1 = Me, R2 = H) in 26% and 10% yields, respec-
tively. By decreasing the reaction temperature and adding a non-
nucleophilic base such as 2,6-di-tert-butyl-4-methylpyridine
(DTBMP), it was possible to isolate and characterize8 the unstable
tetraene triflate 5b as a reaction intermediate (Table 1). During
their study, Scott et al.7 assumed that enol derivatives such as 5
would readily isomerize via sequential hydrogen shifts and would
eventually aromatize by loss of HX. Therefore, lutidine was added
to the isolated 5b to generate the chloroazulene 2b as the unique
Table 1
Direct synthesis of 1-chloroazulenes 2 from a-chlorotrienones 1

Chlorotrienone R1 R2 Yielda (%) Product (via 5)

1a H H 42 2a (5a)
1b Me H 81 2b (5b)
1c Me i-Pr 73 2c (5c)
1d Me CH3–CH–CO2Me 85 2d (5d)

a Yields obtained after purification on silica gel.
product in excellent yield.9 Various trienones 1 were submitted
to this methodology to provide the corresponding chloroazulenes
2 as the sole products. These precursors of natural and non-natural
azulenes3 are thus obtained now in good to excellent yields (Table
1).10

Next, the selective formation of 1-chloroazulen-2-yl triflates 3
was investigated. Azulenes display usual polarity (dipole mo-
ment),11 which reflects their tropylium cation-cyclopentadienyl
anion character. Our approach was to generate by hydride abstrac-
tion the tropylium cation, which by proton loss would be exposed
to aromatize to afford the desired azulenes 3. Indeed, addition of
tropylium cation12 (TpBF4) provided the more stable (delocalized)
tropylium derivatives, which rapidly aromatized.13 The substituted
azulenes 3a–d could thus be obtained in good to excellent yields in
only one14 or two steps from the a-chlorotrienones 1 (Table 2).

These chloro-trifates 3 can be selectively coupled by using
trialkyl aluminium reagents15 to introduce a methyl group at
C-2. For example, 3b was transformed into chloroazulene 6b in
85% yield. This in turn can be engaged in a Suzuki cross-coupling16

to afford new non-natural 1,2,4-trimethylazulene 4b in 96% yield
(Scheme 4).17

This improved preparation of chloroazulenes translates into an
improved synthesis of natural azulenes. For example, azulene itself
can now be synthesized in just 4 steps and in 17.4% overall yield18

from inexpensive cycloheptatriene and 1,4-dimethylazulene in 5
steps and in 34% overall yield19 from the tropylium cation. In addi-
tion, this new and unusually direct aromatization also leads to a
new type of azulene, activated toward coupling at both C-1 and
C-2. These derivatives should prove interesting for the synthesis
of novel azulenes by different cross-coupling reactions.

Finally, this new direct aromatization technique appears to be
applicable for accessing benzene derivatives, and is still under
investigation.
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